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ABSTRACT

Linearized cavity floaw theory, in conjunc-

tion with a mapping technique, is used to develop

general expressions for the characteristics of super-

cavitating or fully ventilated, two dimensional hydro-

foils with prescribed pressure distributions, designed

for operation near a free surface. It is assumed

that the hydrofoils are operating at zero cavitation

number and that the Froude number - based on depth -

is very large. The general expressions are used to

derive the lift, cavity drag and shape of hydrofoils

composed of 2-, 3-, and 5-term and constant pressure

camber configurations, combined with angle of attack

and quasi-parabolic thickness and designed for opera-

tion at specific depths. Examples of numerical re-

sults are given and the effect of foil strength is

discussed and evaluated.
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NOTATION

A, a Constants in the conformal transformation, depend-
ing on depth

CD Drag Coefficient = D

L
C Lift Coefficient = 2

Tp00 C

CM Moment Coefficient = 22
2p U0 c2

c Chord length

CD(h,ki,5,r) Drag Coefficient of a foil designed for depth-
chord ratio h, with camber distribution type i,
camber index ki, design angle of attack b and

quasi-parabolic thickness coefficient T

CL(h, kl,5) Lift Coefficient of a foil designed for depth-
chord ratio h, with camber distribution type i,
camber index ki, and design angle of attack 5

CM(hki,5) Moment Coefficient of a foil designed for depth-
chord ratio h, with camber distribution type i,
camber index ki, and design angle of attack 6

D Two dimensional cavity drag

h Depth of submersion / chord

k i Camber index of camber distribution type i. i
takes on the valuea 1, 2, 3 or 5 to denote that
the camber distribution is of the constant pres-
sure, two-term, three-term or five-term type, re-
spectively

L Two dimensional lift on the hydrofoil

M Two dimensional moment about the leading edge of
the hydrofoil, positive in the direction tending to
pitch the nose up
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p Local pressure on the bottom surface of the hydrofoil

Pc Cavity pressure

POO Static pressure in the free stream

Ap Pressure difference between the upper and lower surfaces
of the hydrofoil

S Leading edge suction force on a fully wetted airfoil,
positive in the direction of U

u The x component of the perturbation velocity in the
hydrofoil plane, expressed as a fraction of U

u The x component of the perturbation velocity in the air-
foil plane, expressed as a fraction of U

v The y component of the perturbation velocity in the
hydrofoil plane, expressed as a fraction of U

v The y component of the perturbation velocity in the
airfoil plane, expressed as a fraction of U

x A space coordinate in the hydrofoil plane, parallel to
U00 its origin coincides with the leading edge of the

foil. Distance along the chord of the hydrofoil ex-
pressed as a fraction of chord length

y Vertical space coordinate in the hydrofoil plane,
expressed as a fraction of the chord length

Yo Ordinate of the bottom surface of the hydrofoil expressed
as a fraction of the chord length

Yc Ordinate of the top cavity boundary, expressed as a frac-
tion of the chord length

Z Hydrofoil section modulus

ZNon-dimensional section modulus = Z/c 3

z A complex variable = x + i y

y Vortex strength

8 Design angle of attack of the hydrofoil

A complex variable = + i
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1 Imaginary coordinate in the airfoil plane

e A dummy variable in the airfoil plane, defined by
S= ½(l-coso)

Real coordinate in the airfoil plane

A dummy variable along the • axis

p Mass density of incompressible fluid

• a Cavitation number = (p - pc) / ½pU2

Quasi-parabolic thickness coefficient

The quantities A, B, C, D, T, F, G, H, J, K, L, M,

G' H, J', K' L M R, Q and b are defined on pages 18 -19

L2 Dilogarithm, defined on page 23

The quantities P and Q are defined on page 22
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THE LINEARIZED THEORY FOR SUPERCAVITATING HYDROFOILS

OPERATING AT HIGH SPEEDS NEAR A FREE SURFACE

INTRODUCTION

Increasing interest in the design of high speed hydrofoil

craft has made it necessary to review some of the basic contribu-

tions in the field of supercavitating or ventilated lifting sur-

faces and to investigate the effect of the proximity of a free

surface on their design. The exact solution of the problem of a

supercavitating inclined flat plate near a free surface was ob-

tained by Green (1)* and was necessarily given in terms of the spray

thickness rather than the depth of submersion. This solution was

discussed by Johnson (2) who presented it in practicable form to-

gether with experimental relationships between the spray thickness

and the depth of submersion. It is evident, however, that in view

of the large cavitation drag on a flat plate at both finite and

infinite depths, it is of great importance to specify low drag

(i.e., cambered) hydrofoil sections.

Tulin and Burkart (3) first showed that the problem of the

supercavitating hydrofoil could be converted into the problem of a

thin airfoil whose lower surface pressures are positive or zero and

that, for reasons of hydrodynamic efficiency, the center of pres-

sure of the foil should be as close to the trailing edge as possible.

They introduced a low drag supercavitating camber configuration by

specifying the pressure distribution on the equivalent airfoil as

the first two terms of a trigonometric series and optimizing its co-

efficients, and proceeded to calculate the characteristics of specific

. Numbers in parenthesis refer to the list of References.
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hydrofoils, designed for operation at infinite depth, by combining

that camber configuration with angle of attack. Anticipating a

possible increase in hydrodynaiiiic efficiency, Johnson (4) intro-

duced camber configurations derived from pressure distributions de-

fined by the first three and the first five terms of a trigonometric

series whose coefficients are also optimized so as to give zero Or

positive pressures on the lower surface and a center of pressure

as far aft as possible. Hydrofoils incorporating these types of

camber configuration have since come to be known as Two-, Three-

and Five-Term Foils and are very useful in infinite depth applica-

t~ons. Specifieally, two--term foils are being used in the design

of supercavitating propellers (5).

If a hydrofoil designed for infinite depth is to be operated

at a finite depth the necessity for maintaining the condition of

shock free entry (i.e. the dividing streamline coincides with the

leading edge) requires that the foil be operated at an angle of

attack which is smaller than the original (infinite depth) design

angle. The lift and the chordwise pressure distribution due to

camber also change as the depth of submersion is varied. An approxi-

mate method for calculating the effect of depth on angle of attack

and on the lift due to camber has been given by Johnson (6) who

also performed experiments which corroborated the theoretical pre-

dictions almost completely.

Johnson resorted to an approximation because of the very

complicated integrals which arise in applying even the linear theory

to the problem of determining the finite depth characteristics of

a supercavitating hydrofoil of specified shape. The results he

obtained are adequate and very useful in ascertaining the effect

of depth variation on the performance of a given foil. It is pos-

sible, however, to design hydrofoils for specified, finite depths

without having to resort to approximations to the linear theory.
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This is done by specifying the pressure distribution that is to re-

sult at the esired operating depth, rather than specifying the

shape of the hydrofoil. This approach results in hydrofoils which

are designed for specific depths and deliver hydrodynamic perform-

ance that is somewhat superior to that of foils designed for in-

finite depth but operating at finite depth. In the present work

the linearized theory (3) is used to derive general expressions, in

terms of an arbitrary pressure distribution, for the shape and per-

formance characteristics of any supercavitating (a=O) hydrofoil

designed for any specified depth. In addition to the limitations

of linear theory the only conditions attached to the validity of

these expressions is that the pressures be positive over the entire

bottom surface of the foil, that the cavity begin at the leading

edge and that the cavitation number based on cavity pressure be

zero.

The general expressions are used to calculate the lower sur-

face shape, cavity shape, lift and drag of two-, three- and five-

term hydrofoils and of a hydrofoil on which the pressure distribu-

tion is constant over the chord. From the results of these calcu-

lations and from a consideration of a hypothetical foil on which

the pressure distribution is that due to a single vortex it is

evident that the hydrodynamic efficiency of a foil depends to a

very great extent on the location of its center of pressure. From

the point of view of innreasing the lift-drag ratio it would be de-

sirable to have the center of pressure as close as possible to the

trailing edge. Strength considerations, however, indicate that

the center of pressure should be located near the foil leading edge

and dictate that the loading at the nose not vanish. The two-,

three- and five-term camber configurations, if used by themselves

without additional angle of attack, would deliver very high lift-

drag ratios but would leave much to be desired from the point of
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view of strength. Specifically, the value of L/D for a given lift

increases as the center of pressure is moved to the rear, but in

all three camber shapes, when the lift is produced by camber alone,

the location of the upper cavity boundary near the leading edge is,

according to the linear theory, below the theoretical bottom surface

of the foil. The constant pressure distribution results in camber

configurations whose strength is somewhat improved but whose lift-

drag ratios are relatively poor.

The first remedy that suggests itself is the standard one of

combining the various camber distributions with angle of attack.

'The high leading edge pressures associated with angle of attack

have the effect -- at the cost of reduced lift-drag ratios -- of

greatly enlarging the cavity thickness and hence (since the foil can

be thickened to fill the entire cavity without affecting its hydro-

dynamic characteristics) result in increased strength. The lin-

earized characteristics of a flat plate operating near a free sur-

face are calculated by using Munk's inversion formula (7) to derive

the pressure distribution and incorporating it into the above men-

tioned general expressions for lift, drag and upper cavity shape.

In addition, the strength characteristics can be improved --

at moderate cost in drag -- by superimposing upon the foil the pres-

sure distribution generated by a single vortex located at the lead-

ing edge of the equivalent airfoil. The bottom shape associated

with this leading-edge-concentrated pressure is a semi-parabola in

foils designed for infinite depth and a similar, quasi-parabolic

configuration in foils designed for finite depths. Thus the pres-

sure concentration at the nose has the effect of rounding the

otherwise very sharp leading edge in addition to increasing the

overall area of the foil section.

It will be shown how the performance characteristics and

shapes due to camber (e.g., two-term, three-terim, five-term or
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constant pressure) are to be combined with those due to angle of at-

tack and quasi-parabolic thickness to obtain the shape and charac-

teristics of a foil composed of a set of these three parameters.

As in the work of Tulin-Burkart (3) and Johnson (4), the

method selected for the treatment of the hydrofoil problem is the use

of the concept of an equivalent airfoil derived from a suitable con-

formal transformation.

THE HYDROFOIL-AIRFOIL EQUIVALENCE

In considering the problem of a supercavitating or fully ven-

tilated hydrofoil at a finite deptbhbelow a free surface it is assumed

that (a) the limitations of linear theory apply (i.e., the velocity

perturbations are small in comparison to the forward 6peed of the

foil), and (b) the cavitation number a is zero. Asumptions (a) and

(b) are the same as those used in the design of infinite depth hydro-

foils. In addition it is postulated that (c) the Froude number based

on depth is very large so that on the free surface the velocity per-

turbation in the x direction (the direction of the stream) is zero.

With these assumptions, the problem of the thin hydrofoil near

a free surface, schematically illustrated in Figure 1, can be repre-

sented by a semi-infinite slit on the x axis in the complex z = x + iy

plane, the free surface being represented by the line y = h. This

configuration, shown in Figure 2 together with the relevant boundary

conditions, is a simply connected polygon B , C, C', D, E, B which

lends itself to a Schwarz Christoffel transformation of the type

dz A[C]

where z = x + ly is the complex space coordinate in the hydrofoil

plane,

S= ý + in is the complex space coordinate in the airfoil

plane, and
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A and a are constants depending on the depth/chord ratio h.
This transformation maps the entire z plane into the lower half of

the C plane.

With the above mentioned boundary conditions and the con-

straints that

when x = 0 0

and when x = I
the integration of the transformation [1] and its separation into

the real and imaginary parts yield the result

x + 10 = aA[ ý - In(l + ) where e < 0a a[2

x - iO = aA[ Is - ln(l + 1) ] where e > 0

where

aA= h [3a]
and

1 1+a1 - In 1 " [3b]A a

Plots of a and A vs. depth-chord ratio and of - vs. are shown

aA a
in Figures 3 and 4.

As shown in Figure 2 and indicated in equation [2], the upper

half of the z plane maps into the negative • axis and the lower

half of the z plane maps into the positive • axis. Thus the abcissa
of a point (x, y.) on the upper cavity streamline in the z plane is

represented by a negative e in the C plane and the abcissa of a point

(x, yo) on the lower cavity streamline (i.e., the lower surface of
the foil and the lower boundary of the trailing cavity) is represented

by a positive e in the C plane. Equations t3a] and [3b] together

All distances are normalized with respect to the chord length of the
hydrofoil and all perturbation velocities are normalized with respect
to the speed of the stream at infinity, U .
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constitute an implicit solution for a and A in terms of the depth-

chord ratio h.

At the limits of zero and infinite depth the asymptotic

values of the constants and the transformation are:

a- 0

-when h-- 0 A -1l

x-iO - where • >0 [41

Note that on the surface (h = 0) there is no distortion between the

airfoil and the hydrofoil. I a
A 2a

when h-* x+iO e2 where e < 0 [51

x-iO 2 where • > 0

Thus, at infinite depth the transformation [2] reduces to
the one used by Tulin and Burkart (3).

LIFT, DRAG, MOMENT AND CAVITY SHAPE

The lift on the hydrofoil and the moment about its leading

edge may be written as

1

L = f Apdx [6]

0

and
1

14 = - f Apxdx 17]
0

(positive in the direction tending to pitch the nose up)
where Ap = the pressure difference between the face and back of the

nydrofoil.



HYDRONAUTICS, Incorpora ted
-8-

Using the linearized Bernoulli equation

p + PU2 u = [8
where

p = the mass density of the fluid

UW = the velocity very far upstream and downstream of

the foll

u = u(x) = the ratio of the perturbation velocity on

the lower (pressure) side of the hydrofoil to

the free stream velocity U.

and p = the pressure on the lower (pressure) side of the

foil,

and noting that since the cavitation number is zero the pressure

on the upper surface of a supercavitating foil is p., we get
p= p-p pU 2 u [91

In the linearized cavity flow theory lines of constant per-

turbation velocities remain unchanged when transformed from the z

to the C plane (and vice versa). Consequently the conformal trans-

formation has no effect on the perturbation velocities u and v,

other than to distort the x location at which a given velocity

exists (i.e., the pressure--proportional to u--at a point x on the

hydrofoil is exactly the same as the pressure at the corresponding

point ý on the airfoil), so that

u(x) = U (W) [10]

(unbarred quantities refer to the hydrofoil; barred quantities, to

its equivalent airfoil).

Combining the real part of equation [il and equations [2],
1 2

[9], and [10], and normalizing with respect to 1-U2 we get, for
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the lift and moment coefficients,

CL -2 jl A- u(e)dt [ii]

and

C = 2 x "A-- u(ý)dý= 2 flaA[l -ln(+ 1)]A' +u(t)dt . [12]

0 f t8 a a e+a

In the limits of h = 0 and h oo these expressions reduce to

CL =-2 fl u(t)de (h=O) ll

C L = - 2 fl 2t-(t)dt (h=oo) [11b]
0

and CM = 2 f 1 2U()dý (h=O) [12b]

0c = 2 [12a

In linear theory, the drag on an element of chord of a

hydrofoil may be expressed as the product of the lift on arid the
dyo

slope d of that element. Using the linearized boundary condi-

tions (shown in Figure 2) and the fact that angles (e.g., *x) are

not affected by the transformationwe may write

dy = v(x) =[13]

dx

where v(x)U = the perturbation velocity in the y direction on the

bottom of the hydrofoil,

and 7(t)UO = the perturbation velocity in the q direction on the

positive e axis in the airfoil plane.

Hence the drag
=2 1D = 0l V(t)Apdx=-pU 1 v(t)•(t) A dt [14]0 0 0 t+a'



HYDRONAUTICS, Incorporated
-10-

As shown by Tulin and Burkart (3), V(t) can be expressed in terms
of U(R) in the following manner: The downwash at t point t on
the hydrofoil, induced by a vortex of strength y, located at t' is

T . Since y = -2U(t'), (negative because U(t') is the

velocity perturbation on the bottom of the hydrofoil), the down-

wa-sh, integrated over the chord,. become~s

dY _ ) 1 j1dt' where 0 < 1 [15]

dx r 0 -d' -

Combining equations [14] and 115] and normalizing we get

CD =2 f 1 f1  A [U(e)(X)• dtde'

o~ ~ 2 - L(t+a)(t-t')
0 0

Aa~r 1 1 dtdt' (a/0)
7r 0 0

and finally, using equation [3a],

CD = [h +a (a-) [16]

In the limiting case of infinite depth the drag coefficient

becomes
Fl 2

C 2 1 - u(t)dt] (h=-) [16a]D 0

At zero depth the hydrofoil becomes a planing surface and
its cavity drag is, in all respects, synonymous with the spray drag
experienced by such surfaces. Wagner (8) long ago showed that,

except in the immediate neighborhood of the leading edge, the high
speed flow past a planing surface was identical to the flow past
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the lower surface of an identically formed fully wetted airfoil.

The difference between the two flows (in the immediate neighbor-

hood of the leading edge) consists in the fact that the leading

edge suction force experienced by a fully wetted airfoil does not

exist on a planing surface (or, for that matter, on any super-

cavitating hydrofoil) and is replaced -- on the planing surface

only -- by spray. Wagner showed that the total drag on a planing

surface was equal to half the drag on the identical fully wetted

airfoil less half the leading edge suction force S acting on the

latter. Since the total drag on a fully wetted airfoil in an in-

viscid fluid is zero, the spray drag can be written as

D= -fS (h=O)

The magnitude of the leading edge suction force S is well known

in airfoil theory and is given by Jones (9) as

S - 2O[p u) [uýx)

Combining the last two equations, normalizing with respect to

00U and noting that at h=O, x=e we get, for the spray drag co-

efficient

r 2
lim {•(e) rJ (h=O) [16b]

Equation [16b] shows that if the pressure (proportional to

u) on the lower surface, at the leading edge of the foil goes to

infinity as -fe-- the flat plate is a case in point -- the spray

drag is indeed a finite quantity. It also shows, as Wagner (8)

anticipated, that by proper use of camber it is possible to produce

lift without spray or spray drag. It will be seen below that the

two-term, three-term, five-term and constant pressure camber con-

figurations fulfill this ambition.

The ordinates of the lower and upper cavity streamlines
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(Yo and yc respectively) are obtained by integrating their slopes.

The slope of the lower cavity boundary (i.e., the bottom surface

of the foil) has already been given in equation [15]. Employing

the same reasoning but keeping in mind that the upper part of the

hydrofoil is mapped into the negative e axis, the slope of the upper

cavity streamline can be shown to bee*

1y ad = 1 -fl ' de' where -• < t < 0 [17]

and the ordinates of the upper cavity boundary of the hydrofoil and

lower surface are

0f• W (_e,) , +aA de' where -a < t < 0 [18]

and

y( f• t (W) Att del where 0 < e < 1 [19]0 0 ' + a- -

Note that [18] and [19] give the cavity ordinates in the hydro-

foil plane in terms of abcissas in the airfoil plane. This is only

due to the fact that the transformation (equation [2]) cannot be

inverted to give an explicit expression for e in terms of x, and

can be remedied in the process of plotting the actual cavity shapes.

In the limiting cases of zero and infinite depth the upper

and lower cavity ordinates become

It is pointed out that in spite of the similarity of the integrands
in equations [15] and [17] the expressions (after integrations) for
V(-t) and V(e) will be entirely dissimilar due to the fact that
equation [15] contains a singular integral.
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Yo(X = fx V (t') de' (h = 0)
0

yc (x) = f 2 }*(t') ed
0 r (h = .) [20]

yo(X = f/'V 2 V(.,) jdj.,
0

In equations [ii], [12], [16], [18], and [19] we have the

means to calculate the lift, moment, drag and upper and lower cav-

ity ordinates of a supercavitating hydrofoil, designed for any spe-

cified depth, in terms of the u perturbation velocity (and hence,

the pressure) on the bottom of its equivalent airfoil. The condi-

tions relevant to the validity of these equations are that (a) a

cavity does indeed exist everywhere on the upper hydrofoil surface,

(b) there is no cavitation anywhere on the lower surface, (c) the

linear theory holds, (d) the cavitation number is zero, and (e) the

Froude Number is very large.

It is often convenient to express the pressures on a given

hydrofoil as the sum of a number of different types of pressure

distributions. Conversely, analysis of the characteristics of

various types of pressure distribution often leads to the conclu-

sion that it might be advisable to combine some of them into one

foil. Such a foil is referred to as a composite foil whose various

components are the shapes associated with each of the specific

types of pressure distribution. Each of the characteristics of

the composite foil is a function of all its component pressure

distributions in addition to being a function of depth. Denoting

n different component pressure distributions by u1, u2 , ... Un,.

the characteristics of a composite foil are found from equations
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[ii], [12], [16), [18) and [191:

CL(h,ul, u2 , ... , u) CL(h,u lO,...,0) + CL(h, 0,u 2 ,.. .0)

+ ... + CL(h,0,0,....Iun) [21]

CM(h, u,u 2,...,un )-_C14(h, ul., 0,.. 0)+C M(h., O, u2',..., 0)"

+ ... CM(h,0,O,...u n) [22]

CD(hulX 2 ,...,U)( CD(h, ul, O,...,O) + UD(h,Ou 2 ,u..,0)

+ CD(h,,0,...Un) )2 [23]

yo(h,x, UlU2, "Un)=Yo (h,X, Ulp,0, 0)+Yo (h,x, 0, u2,9 ' n)

+...+ y (h,x,O, 0,.. .,un) [24]

and

YC (h,X,U,U 2 ,...,un)=yc (h,xulO,...,O)+yc (h,x, O, u ,2 ,O)

+ ... + Yc(hx, 0,0,..Un) [25]

Notation of the type CL(h,ul,u 2 ,...,un), introduced here in

general terms, will be used later to denote the characteristics of
depth-adapted hydrofoils which are combinations of camber (denoted

by ki), angle of attack 6 and quasi-parabolic thickness T. The

types of camber configurations that will be considered are the

constant pressure (kl), the two-term (k 2 ), the three-term (k 3 ) and

the five-term (ks). Thus, for example, y0 (h,x,k 3, 6, T) denotes
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the bottom surface ordinate, at x, of a three-term foil which has

been designed for operation at a depth of h chords and whose camber

index, angle of attack and thickness coefficient have the values

k and T, respectively; CL(1,0,2.5 0 ) is the lift coefficient de-

veloped by a flat plate operating at a depth of 1 chord at an

angle of attack of 2.5 degrees; and CD(l,O,2.55°O.O1) isa the drag

coefficient of a quasi-parabolic shape designed for operation at

a depth of one chord with a thickness coefficient of 1% at an angle

of attack of 2.5 degrees.

The general expressions will now be used to calculate the

lift, drag, moment and shape of depth adapted camber configurations

which are characterized by certain specified types of pressure

distributions.

THE OPTIMUM PRESSURE DISTRIBUTION

Tulin and Burkart (3) have shown that for the class of all

possible cavitating hydrofoils the absolute optimum pressure dis-

tribution is that in which the pressure is entirely concentrated

at the trailing edge of the foil. They pointed out that in spite

of the fact that such a pressure distribution cannot be realized

on any practical hydrofoil the performance of this "optimum foil"

is a very convenient criterion against which the lift-drag

efficiency of all other supercavitating foils can be measured. The

lift-drag ratio of the optimum foil, designed for infinite depth,

was shown to be 8-_ . It is of interest to find the value of this
CL

optimum ratio for foils designed for other depths.

Let us consider the pressure distribution in the airfoil

plane, shown in Figure 4, which is such that the pressures are

entirely concentrated at a point " . The distribution of the U

velocity on the bottom surface of the foil can then be expressed as
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[26]

where K is a constant and 6(9-to) is the Dirac delta function

which is such that

0 for e-o / 0

. fort ý-o = 0
0

fe 6(•-o)dt = 1

and

./f (, -o f ()dý = f (e 0)
-CO

Combining equation [26] with (N) and [16] we obtain

_CL 4h 2

CD a-2.C L 0

Clearly, the largest possible lift-drag ratio will be obtained

when e. = 1 (i.e., the pressures are concentrated at the trailing

edge) so that

opt aCL

Figure 5 illustrates how the optimum lift-drag ratio for a given

lift coefficient varies with depth. As can be seen, (D) for a
Nopt

depth of one chord is almost four times as high as that for infinite

depth. Equation [27] also illustrates that in the absence of

strength requirements (which, in a practical case, might be over-

whelming) the center of pressure should be located as far aft as

possible.
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THE TWO-, THREE- AND FIVE-TEM CAMBER DISTRIBUTIONS

The perturbation velocity in the airfoil plane on the two-
term camber distribution is given by Tulin and Burkart (3) as

= - 8- k 2 (sine-½ sin 29) [28]

51r2
where e is a dummy variable defined by

S= ½(l-cose)
Johnson (4) showed that for the three-term camber

= - k (sin e - sin 2e + ½ sin 3e) [29]
3r 3

and for the five-term camber

u(t) = - k (sin e - L sin 29 + L sin 39- sin 49
5r7 5 3 3 3

1 sin 5e) [30]

the u distributions for given values of k2 , k3, and k5 are shown

in Figure 6. The coefficients k2, k3, and k5 serve the purpose of

scaling the magnitude of the respective pressure distributions and,
hence, serve also as scaling factors for the CL, CM' CD and shape

of the three types of camber configuration. These coefficients

shall be termed the 2-, 3- and 5-term camber index. It will be
seen that for camber configurations designed for infinite depth

the numerical value of the camber index is also equal to the value

of the lift coefficient when no angle of attack is present.

When the expressions for U(t) given in equations [28], [291
and [30] are combined with equations [11], [16], [18], and [19] the
following expressions for the lift, drag, bottom shape and top
cavity shape of the three camber configurations are obtained:

The work involved is one of straightforward, if sometimes laborious,
integrations demanding special care when improper integrals are in-
dicated. For some of the more complicated integrations the tables
of integrals in [10] and [11] were used.
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First, let
A = -a In a a = x

a h

1i=2 -J
-j =3 aiC"=- -aB

3

-15 -

Ei=- - aD
5

Y;• 16 _ a'i

R =Vi - for (< o)

=R - I) in (1-2j-2R)

-1R3 +H=-R +•"
3
4= ý R3 + 5-

8- 2. 2R3
K=-. +

5 10

1L t 3 R3 + I

M = R - (a+)ln(1-2�-2R)- Va +a In a-(2a+)+2a +

where • is defined by equation [21,

letQ ="x+

G' = - ½ (V-"+ I) Q- in (I + 2VT-- 2Q)

H' =xQ 3 +IG'

3*
=•- Q +H
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L' =-1 x3/2 Q3 + 3 K'

M 1 2 3 ii= Qx

and let b = 2a + 2 -Va(l+a) + 1

Then, for the two-term camber,

4 (h =0)5k2

CL (hk 2 '°) = 5a- + 8a 2 (-r a )2  2a] (0 < h <)

k2 (h = a.)

0 (h =0)

4k2 )2 2, 2
CD(h,k 2 ,',o0) h( - [1-4. ('- aa )J(0< h <

8(h = 2 )
25r 21 k2 28
'4k 2 2 8 x3) h O

(x + 2x x (h 0)
5w 3

•hk2 2

YO(h,xk 2 ,0, O)= 2 2 i-4a-8a n a+_)
5r

+ 2a(1)2(1+2a - 4) (0 < h <as)

511 3
whr (x +e -n4 b u) (h2

where is defined by equation (2]
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Ych k'05 2 ( + 27B - 4 - 4-H + 4ad - 4a2 g) (O<h<=)

Y0 (h, xk 2,0,0) 5ar

8k2 x x3/2 2
5r -2x - J') (h3- )

For the three-term camberr:

k3 (h : 0)

2hk

3&j (h- + 1 (0<h<co) -

0 (h = o)

CD (h, k3 , 0,0) h ( )2 (1 1+L (O<h<w)3b ( b 2b2
22b2

2 k3 (h - -)

2k 3  2 223-V (x- 3x 2 + 332 x3 _8 x4) (h 0 )

Yo(hxk 3 ,0,0)= 4hk3 (½ X - 3B + 16C- - 16D) (0<h<-m)

3a~r

2k3 3 2  h2k3 (5x - 20o x3/2 + 8o x2 _64 x5/2) (h = w)
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2[!-632(UCflJ') + (32a+1.6) iif

3 )3aTr2 + (32a 2 +16a+2) (ai-i)] (O<h<co)

!!, A +2x3/2+8x2+ 2 5/_2

+ 16.11-2H] (h= )

For the five-term camber:

3k 5 (h = 0)

3hk5 r a k 2 1

L 505a'r 3b' b b 2 b3 b]
CThk, ) i •3 •+ 2 b3 + 1(Oh<-o)

k5  (h " c)

o (h =0)

2k5 2 '4 k 2 1 2
CD(h, k50,(O) h ( 2k )2 (3- +b2 b + j_) (O<h<c-)

D 5'5br b b2 3  b'4

-2-. k 2 (h c
50(h 5(h

-5 (x - 8x 2 + 4ox 3 - 92x 4 + 5 x5
5

128 6 (h 6)
3

YO (h,x, k 5 ,$ ,00) = --- (4-64B+480•-147 D2048i-1024F) (O<h<w)
5air

S(x- 3 x3/2+60x2_ U x5/2+ 512,-3
5r 3 5 3

_51 X7/2) (h co)
7
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8hk5 - 8B+ 667C - 18415 + 256z- - 128(V +T
5air 2 + (128a 4+192a 3 +1O4a 2 +24a+2) (aN - 1)

+ (l28a 3 +l92a2 +1O4a+24) R
YC(h, x,k 5 0,0)= - (l28a2+l92a+lo4)7+(128a+l92)R] (O<h<oe)

5• (I + 8 x3/2+15x2+ 84 x5/2+ 28 x3+ 128 7/2

5r 4 3 5 3 7-
- 128M'-2H'+24J'-lO4K'+I92L') -h-- ( = 9

THE CONSTANT-PRESSURE CAMBER DISTRIBUTION

Since the perturbation velocity u is proportional to the pres-

sure (equation [9] ), the u(t) associated with pressures that are

constant over the chord of the hydr-ofoil -(and, hence, the airfoil)

may be written 1 *
= constant = - k*

and is shown in Figure 6. When this 9(t) is combined with equations

[11], [16], [18], and [19] the following expressions for lift, drag,

bottom shape and top cavity shape are obtained:

CL(h,kl,O) = k (0 < h <)

0 (h =-0)
k1  a+.2( hc)

CL(hkl,O,O) =0 h ( -l In a+l )2 (0 < h <

2
k2- (h =

Due to the standard (NACA) practice of referring to a constant-
pressure mean line as an "a = 1 mean line" k. has been adopted to

denote the camber index associated with this type of pressure dis-
tribution. The numerical value of kI is the same as the value of

the lift coefficient developed by this type of camber (without angle
of attack) at any depth.

g7
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k I
S[x in x + (l-x ) In (l-x ) ] (h = O )

y (h, x, 1 ,0, 0) 27 2  in - a in (i-) + In +a in /(+a)
a a V (l+a)

+ "L ()- - L a_-) LL 2 (j)- a -r (O<h<-o)+ 2 1 +a" 21a ~

[(x-1) in (i-'V) - x in "-ýx-- -\/x (h :

hk 1
hl-• in E-1 -1 in (I-a) - in a In (1+a)2r2 La t a a

+ Ly (l+a) - L21 -L 2( a ) r (O<h<o)YC (h, x. kl, 0, 0)=

1- [(x-1) in (i+÷-Fx) - x in <-F + (h = -)
o n

where L2 (w)= dilogarithm of w K"2 for w1< 1
n=1 n

2L2(i) -

and ý is defined by equation [2].

Due to the inordinate difficulties involved in integrating

equation [12] analytically, the pitching moments were calculated

by performing a separate numerical integration for each depth and

each type of pressure distribution. This was accomplished through

the use of the IBM 1620 digital computer, installed at HYDRONAUTICS,

Incorporated.

The variation of lift coefficient, drag coefficient and the
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CM

location of the center of pressure ( L) with depth, for the two-,

three-, and five-term and the constant pressure types of camber are

shown in Figures 7(a), 7(b), and 7(c), respectively. As a typical

example, the variation of the lift-drag ratio of the two-te-rm Oam-

ber with lift coefficient, is shown in Figure 8. The bottom and

top cavity shapes of the four types of camber distribution, for

depth-chord ratios of 1 and infinity are shown in Figures 9(a) and

9(b), respectively. Except in the case of the constant pressure

type of camber distribution, the upper cavity boundary yc is seen

to lie below yo, the lower - or pressure - surface of the foil.

This result, which implies a crossing of the streamlines, is not

attributed to inadequacies of the linear theory. The same pheno-

menon occurs in many cases in which body shapes are derived, as

is done here, from prescribed pressure distributions, regardless

of whether the problem is treated with linear or exact theory (see

(12) and (13) for discussions of this subject in the literature).

The prescribed pressure distribution, which is the starting point

of the foil design, immediately implies a theoretical foil shape

but the theory, be it linear or exact, which is used to calculate

that shape, does not necessarily guarantee it to be physically

feasible. The theory does, in fact, penalize us for using overly

efficient camber distributions (see Figure 8 ) by compelling us to

accept the reductions in lift-drag ratio that occur when angle of

attack and/or quasi-parabolic thickness are combined with camber

in order to make the foil a practical possibility and provide it

with sufficient strength.
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QUASI- PARABOLIC THICKNESS

A vortex of strength y = r T U located at the leading edge

of the equivalent airfoil will generate a pressure concentrated en-

tirely at the leading edge of the hydrofoil so that the associated

U velocity distribution may be written in terms of the Dirac-delta

function (equation [26]) as

u(t) 6 (E)

Combining u(•)with equations [11], [161, [181, and [19]

yields the following expressions for the lift, drag, moment and shape

associated with the leading-edge-concentrated pressure:

C due to T = 0 (0 < h <)
L

CM due to T = 0 (0 K h )

h(-r )2 (0 < h <)

CD(hO, OT) =(h 7)

L- (o,o,or) = 0 (h - 0)

- 'r T nEa ( < h <)
YO (h,x,O,0,T) = 2ra a

-T •-•In

Yc (h, x.O 0.0. T) = 2 aa

wion [ . (ho

where is defined by equation [2]. The effect of depth on C D(h,0,0,'r)

21
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is shown in Figure 7(b). The upper and lower cavity shapes due

to T, for a number of depth-chord ratios, are shown in Figure 10.

THE INVERSE PROBLEM

To find the characteristics of a supercavitating hydrofoil

of given shape, using the methods outlined herein, it is necess-ary

to express the pressure distribution - or 7(e) - in terms of the

shape before the expressions (equations [11], [12], and [16]) for

the lift, moment and drag coefficients can be used. The inversion

of the integral equation in [15] was shown by Munk (7) to be

_ = l f 1 [31]

in which V(l') can be found from the shape by using equation [13].

Unfortunately the integrations involved in these operations

when the hydrofoil is operating at a finite depth are, for all but

the very simplest shapes, too complicated to be done analytically

and would have to be done by numerical methods. At present, only

the flat plate problem will be solved for finite depths. The prob-

lem of a flat plate with flap near a free surface has been dealt

with elsewhere (14) and for very close approximations to the per-

formance characteristics of two-, three-, and five-term and circular

arc foils which are designed for infinite depth but operating at

some other depth, the reader is referred to Johnson's work (6).

The Flat Plate at Finite Depths

The slope of a flat plate at an angle of attack 6 to the

direction of the flow is

dy0

dx
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We use equations :13] and [31] to obtain

6 [32]

and combine this result with equations [11], [16) and [19] to get,

for a flat plate,

6r (h = 0

C(h,,6)h -Va- (0 < h <c-)
L a

6h o(h = o)
2

62 (h o)

CD(h,°,6,o) 6 a (- rW' - aV) (o < h < -)

r 2(ha +)

2-a
r~

-ý X] (O<h<-)
YC (h,x,O, 6, 0)=

(1+2-V/T) x-JT 2

+ I In (1+ 2 - - x+2 T ]x (h=co)

where P in (1 - 2t - 2 _v t)

~I n - 2a+ -+l e +--2 a1 I n+a
a a•- ( +2 -e a

and e is defined by equation [2].



-rE0NAUTICS, Incorporated

-28-

The variation of CL(h,0,8) and CD(h,0,5,0) and CM(h,0,5)

with depth is shown in Figures 7(a) and 7(b). The moment coef-

ficients were calculated by combining equations [32] and [11] and

performing a numerical integration. The result is shown in Fig-

ture 7(c) as a plot of location of the center of pressure
CM
(C) on the hydrofoil vs. depth-chord ratio. The top cavity shape
L

due to angle of attack for a number of depth-chord ratios is shown

in Figure 11.

OPTIMUM FOILS AND FOIL STRENGTH

In accordance with equations [21), [231, [24], and [25] the

lift, drag and upper and lower cavity ordinates of a foil in which

camber, angle of attack and quasi-parobolic thickness are combined

are found as follows:

CL(h,ki, 6) = cL(h,ki,O,) + CL(h,O,6)

C (h,ki,,6,) ( CD(hki,O,O) + CD(h,O,6,O) + c(h,O,O0,

CM(h,ki,8) c M (hki,O) + CM(h,O,6)

YO(h,x,k 1 ,6,r) = Yo (h,x,ki,O, O)+y (h,x,O,5,0)+Yo(h,x,O,O,T)

Yc (h,x,ki,6,i) = Ye(h,x, ki, 0,O)+yc (h, x, 0, 6, 0)+yc (h, x, O,O, 0)

Of the four camber configurations considered here it is

clear that for given values of 6 and T, foils incorporating the

five-term camber produce the highest lift-drag ratios. This con-

clusion is no longer significant, however, when the strength of
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these supercavitating hydrofoils is taken into consideration. For
purposes of strength calculations it is assumed that the foil sec-
tion is constructed so as to fill the entire thickness of the
cavity*, thus setting the foil thickness at any point along the
chord equal to y c (h,x,k kl,) - y0 (h,x,ki,6,T). The foil strength

is evaluated by considering the non-dimensional section modulus Y
of a beam whose cross section is the hydrofoil section [y = Z/(c)3

where Z = (area moment of inertia) /(the distance between the neutral
axis and the furthest fiber)]. In these calculations it is assumed
that the neutral axis of the beam is parallel to the reference
line (y = 0) of the foil. Since the section modulus is calculated
mainly for comparison purposes it is of little consequence that
the true neutral axis may be oriented somewhat differently and that,
in addition, it may not always be practical to make the foil quite

as thick as the cavity.

The integrations involved in calculating the section modulus
must, of necessity, be carried out numerically for each specific
foil (i.e., a foil composed of a given set of' the parameters h,ki,
6 and T). These calculations were first carried out by hand for
the two-term foil at a depth of one chord, using Simpson's Rule
in the calculation of the section moduli. Subsequently, a high
speed digital computer at the David Taylor Model Basin was used to
calculate the operating characteristics and section moduli of two-
term, three-term, five-term, and constant pressure camber hydrofoils,
designed for depth-chord ratios of 1/4, 1/2, 1, 2, 5 and -. In
these calculations the computer was programmed to consider for each
depth (a) all possible combinations of ki, 5, and T, with ki taking

*The upper surface of the foil is, however, still considered to be
unwetted.
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on 10 values between 0 and 0.6, 6 taking on 13 values between 0 and

3 degrees, and T taking on 9 values between 0 and 1%; and (b) all

possible combinations of the constant pressure camber configurations

with each of the two-, three-, and five-term camber configurations,

with k taking on the same values as in (a). A sample of the re-

sults of these calculations is shown in Figure 12, in which con-

tours of constant 6, k.2 and Z for a single value of T are plotted

on a grid of lift-drag ratio vs. lift coefficient, for a two-term

hydrofoil designed for a depth of one chord. A subsequent report

(No. 001-7) containing all the significant results of this computer

study will be published in the near future. In addition, the com-

puter program contained an optimization procedure in which the pre-

viously stored list of all the foils that had been computed for a

given depth was searched for the three best foils (i.e., those

with highest L/D) whose section modulus and lift coefficient were

within certain prescribed ranges.

The optimization procedure showed that it is not possible

to single out one type of camber distribution as being the absolute

optimum for all depths, lift coefficients and section moduli. It

is possible, however, to make the following generalizations:

(a) The combinations of the constant pressure camber with

two-, three-, and five-term camber configurations are to be recom-

mended only at very low depth-chord ratios (h < 0.5). At depth-

chord ratios of 0.5 or higher this type of foil is efficient only

for unrealistically high section moduli (7 > 12 x 10- 4) and un-

realistically high lift coefficients (CL > .60).

(b) Turning now to foils in which one of the four camber

types is combined with angle of attack and quasi-parabolic thick-

ness, it appears that except at unrealistically low section moduli

(• < 2 x 10- 4) the constant pressure and two-term are more efficient
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than the three- and five-term camber configurations. This trend

intensifies as either the section modulus oi, the design depth is

increased, until, at infinite depth and high section moduli

( > 6 x lO-[) the constant pressure type of camber (combined with

5 and T) dominates the list of optimum foilsJ.

In summary, the optimization process indicates that for

practical values of depth-chord ratio, section modulus and lift

coefficient (i.e., h > 0.5, 2 x 10-4 < Z < 6 x 10-4 and 0.05 <

CL <_ 0.5) the constant pressure and two-term camber configurations,

each properly combined with angle of attack and quasi-parabolic

thickness, deliver higher lift-drag ratios than the other types of

camber. The two-term fo l's are, usually, the better of these two

and in cases in which the constant pressure camber is somewhat

superior the difference between its ]ift-drag ratio and that of

the two-term foils is not very significant.

In Figure 13 a typical, two-dimensional, two-term hydrofoil

is drawn to scale. This particular foil is designed for operation

at a depth of one chord and is composed of camber index k2 = 0.15,

design angle of attack 6 = 1.60 and quasi-parabolic thicknesb

S= 0.004. It develops a lift coefficient of 0.195 and a lift-

cavity drag ratio of 34.5 and its nominal section modulus is
-4Z=4.1xl0
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Figure 2- The Linearized Version of a Supercavitating Hydrofoil
near a Free Surface Transformed into its Equivalent

Airfoil; ' =0
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Figure 7- The Influence of Depth on Lift Coefficient, Drag Coefficient
and Location of the Center of Pressure due to Camber, Angle
of Attack and Quasi-Parabolic Thickness
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